
Faster Kyber and Dilithium on the Cortex-M4

Amin Abdulrahman1,2 Vincent Hwang3,4 Matthias J. Kannwischer3 Amber
Sprenkels5

1Ruhr University Bochum, Germany

2Max Planck Institute for Security and Privacy, Bochum, Germany

3Academia Sinica, Taipei, Taiwan

4National Taiwan University, Taipei, Taiwan

5Digital Security Group, Radboud University, Nijmegen, The Netherlands

23rd June 2022

Faster Kyber and Dilithium on the Cortex-M4 23rd June 2022 1 / 35

Section 1

Introduction

Faster Kyber and Dilithium on the Cortex-M4 23rd June 2022 1 / 35

Introduction

▶ Kyber, Dilithium
▶ Part of CRYSTALS
▶ NIST PQC round 3 finalists
▶ Lattice-based

Faster Kyber and Dilithium on the Cortex-M4 23rd June 2022 2 / 35

Introduction

Kyber
▶ IND-CCA2 secure KEM
▶ Based on MLWE
▶ Operates on
R3329 = Z3329[X]/(X 256 + 1)

▶ Built to profit from NTT

Dilithium
▶ Signature scheme that is strongly

secure under CMA
▶ Based on Fiat-Shamir with Aborts,

MSIS, and MLWE
▶ Operates on
R8380417 = Z8380417[X]/(X 256 + 1)

▶ Built to profit from NTT

Faster Kyber and Dilithium on the Cortex-M4 23rd June 2022 3 / 35

Introduction

Kyber
▶ IND-CCA2 secure KEM
▶ Based on MLWE
▶ Operates on
R3329 = Z3329[X]/(X 256 + 1)

▶ Built to profit from NTT

Dilithium
▶ Signature scheme that is strongly

secure under CMA
▶ Based on Fiat-Shamir with Aborts,

MSIS, and MLWE
▶ Operates on
R8380417 = Z8380417[X]/(X 256 + 1)

▶ Built to profit from NTT

Faster Kyber and Dilithium on the Cortex-M4 23rd June 2022 3 / 35

Introduction

Kyber
▶ IND-CCA2 secure KEM
▶ Based on MLWE
▶ Operates on
R3329 = Z3329[X]/(X 256 + 1)

▶ Built to profit from NTT

Dilithium
▶ Signature scheme that is strongly

secure under CMA
▶ Based on Fiat-Shamir with Aborts,

MSIS, and MLWE
▶ Operates on
R8380417 = Z8380417[X]/(X 256 + 1)

▶ Built to profit from NTT

Faster Kyber and Dilithium on the Cortex-M4 23rd June 2022 3 / 35

Introduction

Kyber
▶ IND-CCA2 secure KEM
▶ Based on MLWE
▶ Operates on
R3329 = Z3329[X]/(X 256 + 1)

▶ Built to profit from NTT

Dilithium
▶ Signature scheme that is strongly

secure under CMA
▶ Based on Fiat-Shamir with Aborts,

MSIS, and MLWE
▶ Operates on
R8380417 = Z8380417[X]/(X 256 + 1)

▶ Built to profit from NTT

Faster Kyber and Dilithium on the Cortex-M4 23rd June 2022 3 / 35

Introduction

Kyber
▶ IND-CCA2 secure KEM
▶ Based on MLWE
▶ Operates on
R3329 = Z3329[X]/(X 256 + 1)

▶ Built to profit from NTT

Dilithium
▶ Signature scheme that is strongly

secure under CMA
▶ Based on Fiat-Shamir with Aborts,

MSIS, and MLWE
▶ Operates on
R8380417 = Z8380417[X]/(X 256 + 1)

▶ Built to profit from NTT

Faster Kyber and Dilithium on the Cortex-M4 23rd June 2022 3 / 35

Introduction

Kyber
▶ IND-CCA2 secure KEM
▶ Based on MLWE
▶ Operates on
R3329 = Z3329[X]/(X 256 + 1)

▶ Built to profit from NTT

Dilithium
▶ Signature scheme that is strongly

secure under CMA
▶ Based on Fiat-Shamir with Aborts,

MSIS, and MLWE
▶ Operates on
R8380417 = Z8380417[X]/(X 256 + 1)

▶ Built to profit from NTT

Faster Kyber and Dilithium on the Cortex-M4 23rd June 2022 3 / 35

Introduction

Kyber
▶ IND-CCA2 secure KEM
▶ Based on MLWE
▶ Operates on
R3329 = Z3329[X]/(X 256 + 1)

▶ Built to profit from NTT

Dilithium
▶ Signature scheme that is strongly

secure under CMA
▶ Based on Fiat-Shamir with Aborts,

MSIS, and MLWE
▶ Operates on
R8380417 = Z8380417[X]/(X 256 + 1)

▶ Built to profit from NTT

Faster Kyber and Dilithium on the Cortex-M4 23rd June 2022 3 / 35

Introduction

Kyber
▶ IND-CCA2 secure KEM
▶ Based on MLWE
▶ Operates on
R3329 = Z3329[X]/(X 256 + 1)

▶ Built to profit from NTT

Dilithium
▶ Signature scheme that is strongly

secure under CMA
▶ Based on Fiat-Shamir with Aborts,

MSIS, and MLWE
▶ Operates on
R8380417 = Z8380417[X]/(X 256 + 1)

▶ Built to profit from NTT

Faster Kyber and Dilithium on the Cortex-M4 23rd June 2022 3 / 35

NTT in general

▶ Variant of the DFT defined over finite fields
▶ Negacyclic NTT ∧= Evaluation of polynomial at powers of primitive n-th root of unity ζn

for Rq followed by twisting with powers of 2n-th root of unity ζ2n.

NTT(a) = â =
n−1∑
i=0

âiX i with âi =
n−1∑
j=0

ajζ
j
2nζ ij

n

iNTT(â) = a =
n−1∑
i=0

aiX i with ai = n−1ζ−i
2n

n−1∑
j=0

âjζ
−ij
n

▶ Efficient NTT using Cooley–Tukey or Gentleman–Sande FFT algorithms
▶ Fast polynomial multiplication: Let f , g ∈ Rq and ◦ be base multiplication in Rq

f ◦ b = iNTT(NTT(f) ◦ NTT(g))

Faster Kyber and Dilithium on the Cortex-M4 23rd June 2022 4 / 35

NTT in general

▶ Variant of the DFT defined over finite fields
▶ Negacyclic NTT ∧= Evaluation of polynomial at powers of primitive n-th root of unity ζn

for Rq followed by twisting with powers of 2n-th root of unity ζ2n.

NTT(a) = â =
n−1∑
i=0

âiX i with âi =
n−1∑
j=0

ajζ
j
2nζ ij

n

iNTT(â) = a =
n−1∑
i=0

aiX i with ai = n−1ζ−i
2n

n−1∑
j=0

âjζ
−ij
n

▶ Efficient NTT using Cooley–Tukey or Gentleman–Sande FFT algorithms
▶ Fast polynomial multiplication: Let f , g ∈ Rq and ◦ be base multiplication in Rq

f ◦ b = iNTT(NTT(f) ◦ NTT(g))

Faster Kyber and Dilithium on the Cortex-M4 23rd June 2022 4 / 35

NTT in general

▶ Variant of the DFT defined over finite fields
▶ Negacyclic NTT ∧= Evaluation of polynomial at powers of primitive n-th root of unity ζn

for Rq followed by twisting with powers of 2n-th root of unity ζ2n.

NTT(a) = â =
n−1∑
i=0

âiX i with âi =
n−1∑
j=0

ajζ
j
2nζ ij

n

iNTT(â) = a =
n−1∑
i=0

aiX i with ai = n−1ζ−i
2n

n−1∑
j=0

âjζ
−ij
n

▶ Efficient NTT using Cooley–Tukey or Gentleman–Sande FFT algorithms
▶ Fast polynomial multiplication: Let f , g ∈ Rq and ◦ be base multiplication in Rq

f ◦ b = iNTT(NTT(f) ◦ NTT(g))

Faster Kyber and Dilithium on the Cortex-M4 23rd June 2022 4 / 35

NTT in general

▶ Variant of the DFT defined over finite fields
▶ Negacyclic NTT ∧= Evaluation of polynomial at powers of primitive n-th root of unity ζn

for Rq followed by twisting with powers of 2n-th root of unity ζ2n.

NTT(a) = â =
n−1∑
i=0

âiX i with âi =
n−1∑
j=0

ajζ
j
2nζ ij

n

iNTT(â) = a =
n−1∑
i=0

aiX i with ai = n−1ζ−i
2n

n−1∑
j=0

âjζ
−ij
n

▶ Efficient NTT using Cooley–Tukey or Gentleman–Sande FFT algorithms
▶ Fast polynomial multiplication: Let f , g ∈ Rq and ◦ be base multiplication in Rq

f ◦ b = iNTT(NTT(f) ◦ NTT(g))

Faster Kyber and Dilithium on the Cortex-M4 23rd June 2022 4 / 35

FNT

▶ Special case of the NTT with modulus a Fermat number Ft := 22t + 1
▶ For Ft prime: Cyclic transformations up to n = 22t = Ft − 1, negacyclic transformations

up to n = 22t−1

⇒ Twiddles on first t layers are powers of two
⇒ No multiplication, only shifting

▶ Prime Fermat numbers: F0 = 3, F1 = 5, F2 = 17, F3 = 257, F4 = 65 537

Faster Kyber and Dilithium on the Cortex-M4 23rd June 2022 5 / 35

FNT

▶ Special case of the NTT with modulus a Fermat number Ft := 22t + 1
▶ For Ft prime: Cyclic transformations up to n = 22t = Ft − 1, negacyclic transformations

up to n = 22t−1

⇒ Twiddles on first t layers are powers of two
⇒ No multiplication, only shifting

▶ Prime Fermat numbers: F0 = 3, F1 = 5, F2 = 17, F3 = 257, F4 = 65 537

Faster Kyber and Dilithium on the Cortex-M4 23rd June 2022 5 / 35

FNT

▶ Special case of the NTT with modulus a Fermat number Ft := 22t + 1
▶ For Ft prime: Cyclic transformations up to n = 22t = Ft − 1, negacyclic transformations

up to n = 22t−1

⇒ Twiddles on first t layers are powers of two
⇒ No multiplication, only shifting

▶ Prime Fermat numbers: F0 = 3, F1 = 5, F2 = 17, F3 = 257, F4 = 65 537

Faster Kyber and Dilithium on the Cortex-M4 23rd June 2022 5 / 35

FNT

▶ Special case of the NTT with modulus a Fermat number Ft := 22t + 1
▶ For Ft prime: Cyclic transformations up to n = 22t = Ft − 1, negacyclic transformations

up to n = 22t−1

⇒ Twiddles on first t layers are powers of two
⇒ No multiplication, only shifting

▶ Prime Fermat numbers: F0 = 3, F1 = 5, F2 = 17, F3 = 257, F4 = 65 537

Faster Kyber and Dilithium on the Cortex-M4 23rd June 2022 5 / 35

FNT

▶ Special case of the NTT with modulus a Fermat number Ft := 22t + 1
▶ For Ft prime: Cyclic transformations up to n = 22t = Ft − 1, negacyclic transformations

up to n = 22t−1

⇒ Twiddles on first t layers are powers of two
⇒ No multiplication, only shifting

▶ Prime Fermat numbers: F0 = 3, F1 = 5, F2 = 17, F3 = 257, F4 = 65 537

Faster Kyber and Dilithium on the Cortex-M4 23rd June 2022 5 / 35

Arm Cortex-M4

▶ Hardware target: STM32F407-DISCOVERY with STM32-F407VG MCU
▶ 1 MiB flash, 192 KiB
▶ Based on Armv7E-M
▶ 14 usable general purpose registers
▶ 32 single-precision floating-point registers
▶ Powerful DSP with useful SIMD instructions taking one cycle

▶ e.g., smul{b,t}{b,t}, smlad{,x}

Faster Kyber and Dilithium on the Cortex-M4 23rd June 2022 6 / 35

Arm Cortex-M4

▶ Hardware target: STM32F407-DISCOVERY with STM32-F407VG MCU
▶ 1 MiB flash, 192 KiB
▶ Based on Armv7E-M
▶ 14 usable general purpose registers
▶ 32 single-precision floating-point registers
▶ Powerful DSP with useful SIMD instructions taking one cycle

▶ e.g., smul{b,t}{b,t}, smlad{,x}

Faster Kyber and Dilithium on the Cortex-M4 23rd June 2022 6 / 35

Arm Cortex-M4

▶ Hardware target: STM32F407-DISCOVERY with STM32-F407VG MCU
▶ 1 MiB flash, 192 KiB
▶ Based on Armv7E-M
▶ 14 usable general purpose registers
▶ 32 single-precision floating-point registers
▶ Powerful DSP with useful SIMD instructions taking one cycle

▶ e.g., smul{b,t}{b,t}, smlad{,x}

Faster Kyber and Dilithium on the Cortex-M4 23rd June 2022 6 / 35

Arm Cortex-M4

▶ Hardware target: STM32F407-DISCOVERY with STM32-F407VG MCU
▶ 1 MiB flash, 192 KiB
▶ Based on Armv7E-M
▶ 14 usable general purpose registers
▶ 32 single-precision floating-point registers
▶ Powerful DSP with useful SIMD instructions taking one cycle

▶ e.g., smul{b,t}{b,t}, smlad{,x}

Faster Kyber and Dilithium on the Cortex-M4 23rd June 2022 6 / 35

Arm Cortex-M4

▶ Hardware target: STM32F407-DISCOVERY with STM32-F407VG MCU
▶ 1 MiB flash, 192 KiB
▶ Based on Armv7E-M
▶ 14 usable general purpose registers
▶ 32 single-precision floating-point registers
▶ Powerful DSP with useful SIMD instructions taking one cycle

▶ e.g., smul{b,t}{b,t}, smlad{,x}

Faster Kyber and Dilithium on the Cortex-M4 23rd June 2022 6 / 35

Arm Cortex-M4

▶ Hardware target: STM32F407-DISCOVERY with STM32-F407VG MCU
▶ 1 MiB flash, 192 KiB
▶ Based on Armv7E-M
▶ 14 usable general purpose registers
▶ 32 single-precision floating-point registers
▶ Powerful DSP with useful SIMD instructions taking one cycle

▶ e.g., smul{b,t}{b,t}, smlad{,x}

Faster Kyber and Dilithium on the Cortex-M4 23rd June 2022 6 / 35

Arm Cortex-M4

▶ Hardware target: STM32F407-DISCOVERY with STM32-F407VG MCU
▶ 1 MiB flash, 192 KiB
▶ Based on Armv7E-M
▶ 14 usable general purpose registers
▶ 32 single-precision floating-point registers
▶ Powerful DSP with useful SIMD instructions taking one cycle

▶ e.g., smul{b,t}{b,t}, smlad{,x}

Faster Kyber and Dilithium on the Cortex-M4 23rd June 2022 6 / 35

Section 2

Kyber

Faster Kyber and Dilithium on the Cortex-M4 23rd June 2022 7 / 35

Kyber

▶ Three different parameter sets: Kyber-512, Kyber-768, and Kyber-1024.
▶ Same q, n for the three variants

⇒ nice for optimizing
▶ No 2n-th but only n-th primitive root of unity

⇒ 7 layer incomplete NTT
⇒ 2× 2 schoolbook multiplications modulo (X 2 − ω)

Faster Kyber and Dilithium on the Cortex-M4 23rd June 2022 8 / 35

Kyber

▶ Three different parameter sets: Kyber-512, Kyber-768, and Kyber-1024.
▶ Same q, n for the three variants

⇒ nice for optimizing
▶ No 2n-th but only n-th primitive root of unity

⇒ 7 layer incomplete NTT
⇒ 2× 2 schoolbook multiplications modulo (X 2 − ω)

Faster Kyber and Dilithium on the Cortex-M4 23rd June 2022 8 / 35

Kyber

▶ Three different parameter sets: Kyber-512, Kyber-768, and Kyber-1024.
▶ Same q, n for the three variants

⇒ nice for optimizing
▶ No 2n-th but only n-th primitive root of unity

⇒ 7 layer incomplete NTT
⇒ 2× 2 schoolbook multiplications modulo (X 2 − ω)

Faster Kyber and Dilithium on the Cortex-M4 23rd June 2022 8 / 35

Kyber

▶ Three different parameter sets: Kyber-512, Kyber-768, and Kyber-1024.
▶ Same q, n for the three variants

⇒ nice for optimizing
▶ No 2n-th but only n-th primitive root of unity

⇒ 7 layer incomplete NTT
⇒ 2× 2 schoolbook multiplications modulo (X 2 − ω)

Faster Kyber and Dilithium on the Cortex-M4 23rd June 2022 8 / 35

Kyber

▶ Three different parameter sets: Kyber-512, Kyber-768, and Kyber-1024.
▶ Same q, n for the three variants

⇒ nice for optimizing
▶ No 2n-th but only n-th primitive root of unity

⇒ 7 layer incomplete NTT
⇒ 2× 2 schoolbook multiplications modulo (X 2 − ω)

Faster Kyber and Dilithium on the Cortex-M4 23rd June 2022 8 / 35

Kyber

▶ Three different parameter sets: Kyber-512, Kyber-768, and Kyber-1024.
▶ Same q, n for the three variants

⇒ nice for optimizing
▶ No 2n-th but only n-th primitive root of unity

⇒ 7 layer incomplete NTT
⇒ 2× 2 schoolbook multiplications modulo (X 2 − ω)

Faster Kyber and Dilithium on the Cortex-M4 23rd June 2022 8 / 35

Kyber Algorithms

Algorithm: Kyber PKE key gen.
Output: public key: pk = (t̂, ρ)
Output: secret key: sk = (ŝ)

1 ρ, σ ∈ {0, 1}256 ← sampleUniform()
2 Â ∈ Rk×k

q ← sampleUniform(ρ)
3 s, e ∈ Rk×1

q ← sampleCBDη1(σ)
4 t̂← Â ◦ NTT(s) + NTT(e)
5 return (pk, sk)

Algorithm: Kyber PKE decryption
Input : secret key: sk = (ŝ)
Input : compressed ciphertext: (u′, v ′)
Output: message m ∈ Rq

1 u← Decompress(u′)
2 v ← Decompress(v ′)
3 return m← v − iNTT(ŝT ◦ NTT(u))

Algorithm: Kyber PKE encryption
Input : public key: pk = (t̂, ρ)
Input : message: m ∈ Rq
Input : random coins: µ ∈ {0, 1}256

Output: ciphertext (u′, v ′)
1 Â ∈ Rk×k

q ← sampleUniform(ρ)
2 r ∈ Rk×1

q ← sampleCBDη1(µ)
3 e1 ∈ Rk×1

q , e2 ∈ Rq ← sampleCBDη2(µ)
4 r̂← NTT(r)
5 u← iNTT(ÂT ◦ r̂) + e1
6 v ← iNTT(t̂T ◦ r̂) + e2 + m
7 return (Compress(u), Compress(v))

Faster Kyber and Dilithium on the Cortex-M4 23rd June 2022 9 / 35

Optimization: NTT and inverse NTT

▶ Caching in FPU registers: Store reusable values in floating point registers to avoid loading
from memory

▶ CT-Butterflies for iNTT: Avoid intermediate reductions
▶ Better layer merging: Merge layers 7–4, 3–1 instead of 7–5, 4–2, and computing layer 1

separately

Faster Kyber and Dilithium on the Cortex-M4 23rd June 2022 10 / 35

Optimization: NTT and inverse NTT

▶ Caching in FPU registers: Store reusable values in floating point registers to avoid loading
from memory

▶ CT-Butterflies for iNTT: Avoid intermediate reductions
▶ Better layer merging: Merge layers 7–4, 3–1 instead of 7–5, 4–2, and computing layer 1

separately

Faster Kyber and Dilithium on the Cortex-M4 23rd June 2022 10 / 35

Optimization: NTT and inverse NTT

▶ Caching in FPU registers: Store reusable values in floating point registers to avoid loading
from memory

▶ CT-Butterflies for iNTT: Avoid intermediate reductions
▶ Better layer merging: Merge layers 7–4, 3–1 instead of 7–5, 4–2, and computing layer 1

separately

Faster Kyber and Dilithium on the Cortex-M4 23rd June 2022 10 / 35

4 Layer Merge
a0

a2

a4

a6

a8

a10

a12

a14

a1

a3

a5

a7

a9

a11

a13

a15

Figure: 4 layer radix 2 NTT signal flow

Faster Kyber and Dilithium on the Cortex-M4 23rd June 2022 11 / 35

4 Layer Merge
a0

a2

a4

a6

a8

a10

a12

a14

a1

a3

a5

a7

a9

a11

a13

a15

Figure: 4 layer radix 2 NTT signal flow

Faster Kyber and Dilithium on the Cortex-M4 23rd June 2022 11 / 35

4 Layer Merge
a0

a2

a4

a6

a8

a10

a12

a14

a1

a3

a5

a7

a9

a11

a13

a15

Figure: 4 layer radix 2 NTT signal flow

Faster Kyber and Dilithium on the Cortex-M4 23rd June 2022 11 / 35

4 Layer Merge
a0

a2

a4

a6

a8

a10

a12

a14

a1

a3

a5

a7

a9

a11

a13

a15

Figure: 4 layer radix 2 NTT signal flow

Faster Kyber and Dilithium on the Cortex-M4 23rd June 2022 11 / 35

4 Layer Merge
a0

a2

a4

a6

a8

a10

a12

a14

a1

a3

a5

a7

a9

a11

a13

a15

Figure: 4 layer radix 2 NTT signal flow

Faster Kyber and Dilithium on the Cortex-M4 23rd June 2022 11 / 35

4 Layer Merge
a0

a2

a4

a6

a8

a10

a12

a14

a1

a3

a5

a7

a9

a11

a13

a15

Figure: 4 layer radix 2 NTT signal flow

Faster Kyber and Dilithium on the Cortex-M4 23rd June 2022 11 / 35

4 Layer Merge
a0

a2

a4

a6

a8

a10

a12

a14

a1

a3

a5

a7

a9

a11

a13

a15

Figure: 4 layer radix 2 NTT signal flow

Faster Kyber and Dilithium on the Cortex-M4 23rd June 2022 11 / 35

4 Layer Merge
a0

a2

a4

a6

a8

a10

a12

a14

a1

a3

a5

a7

a9

a11

a13

a15

Figure: 4 layer radix 2 NTT signal flow

Faster Kyber and Dilithium on the Cortex-M4 23rd June 2022 11 / 35

4 Layer Merge
a0

a2

a4

a6

a8

a10

a12

a14

a1

a3

a5

a7

a9

a11

a13

a15

Figure: 4 layer radix 2 NTT signal flow

Faster Kyber and Dilithium on the Cortex-M4 23rd June 2022 11 / 35

4 Layer Merge
a0

a2

a4

a6

a8

a10

a12

a14

a1

a3

a5

a7

a9

a11

a13

a15

Figure: 4 layer radix 2 NTT signal flow

Faster Kyber and Dilithium on the Cortex-M4 23rd June 2022 11 / 35

4 Layer Merge
a0

a2

a4

a6

a8

a10

a12

a14

a1

a3

a5

a7

a9

a11

a13

a15

Figure: 4 layer radix 2 NTT signal flow

Faster Kyber and Dilithium on the Cortex-M4 23rd June 2022 11 / 35

Kyber Algorithms

Algorithm: Kyber PKE key gen.
Output: public key: pk = (t̂, ρ)
Output: secret key: sk = (ŝ)

1 ρ, σ ∈ {0, 1}256 ← sampleUniform()
2 Â ∈ Rk×k

q ← sampleUniform(ρ)
3 s, e ∈ Rk×1

q ← sampleCBDη1(σ)
4 t̂← Â ◦ NTT(s) + NTT(e)
5 return (pk, sk)

Algorithm: Kyber PKE decryption
Input : secret key: sk = (ŝ)
Input : compressed ciphertext: (u′, v ′)
Output: message m ∈ Rq

1 u← Decompress(u′)
2 v ← Decompress(v ′)
3 return m← v − iNTT (ŝT ◦ NTT(u))

Algorithm: Kyber PKE encryption
Input : public key: pk = (t̂, ρ)
Input : message: m ∈ Rq
Input : random coins: µ ∈ {0, 1}256

Output: ciphertext (u′, v ′)
1 Â ∈ Rk×k

q ← sampleUniform(ρ)
2 r ∈ Rk×1

q ← sampleCBDη1(µ)
3 e1 ∈ Rk×1

q , e2 ∈ Rq ← sampleCBDη2(µ)
4 r̂← NTT(r)
5 u← iNTT (ÂT ◦ r̂) + e1
6 v ← iNTT (t̂T ◦ r̂) + e2 + m
7 return (Compress(u), Compress(v))

Faster Kyber and Dilithium on the Cortex-M4 23rd June 2022 12 / 35

Optimization: Barrett Reduction

Algorithm: Packed Barrett Reduc-
tion [BKS19]
Input : a = (at || ab)
Output: c = (ct || cb) mod ±q

1 smulbb t0, a, ⌊226

q ⌉
2 smultb t1, a, ⌊226

q ⌉
3 asr t0, t0, #26
4 asr t1, t1, #26
5 smulbb t0, t0, q
6 smulbb t1, t1, q
7 pkhbt t0, t0, t1, lsl #16
8 usub16 r, a, t0

Algorithm: Improved Packed Barrett Re-
duction
Input : a = (at || ab)
Output: c = (ct || cb) mod ±q

1 smlawb t0,−⌊232

q ⌉, a, 215

2 smlabt t0, q, t0, a
3 smlawt t1,−⌊232

q ⌉, a, 215

4 smulbt t1, q, t1
5 add t1, a, t1, lsl #16
6 pkhbt c, t0, t1, lsl #16

▶ Note: Output range not in [0, q) but [−q−1
2 , q−1

2] for odd q

Faster Kyber and Dilithium on the Cortex-M4 23rd June 2022 13 / 35

Optimization: Matrix-vector and inner product

Optimization based on technique presented in [Bec+21]:
▶ Recall base multiplication for Kyber: Let â = Âm,n, ŝ = ŝm. For ĉ = â ◦ ŝ

ĉ2i + ĉ2i+1X = (â2i + â2i+1X)(ŝ2i + ŝ2i+1X) mod (X 2 − ζ2br7(i)+1), with
ĉ2i = â2i ŝ2i + â2i+1ŝ2i+1ζ2br7(i)+1

ĉ2i+1 = â2i ŝ2i+1 + ŝ2i â2i+1

▶ Notice: · · ·· · ·
· · ·

 ·
··
·

 =

··
·

▶ Asymmetric multiplication: Cache/Reuse multiplication with twiddle factors during base

multiplication.

Faster Kyber and Dilithium on the Cortex-M4 23rd June 2022 14 / 35

Optimization: Matrix-vector and inner product

Optimization based on technique presented in [Bec+21]:
▶ Recall base multiplication for Kyber: Let â = Âm,n, ŝ = ŝm. For ĉ = â ◦ ŝ

ĉ2i + ĉ2i+1X = (â2i + â2i+1X)(ŝ2i + ŝ2i+1X) mod (X 2 − ζ2br7(i)+1), with
ĉ2i = â2i ŝ2i + â2i+1ŝ2i+1ζ2br7(i)+1

ĉ2i+1 = â2i ŝ2i+1 + ŝ2i â2i+1

▶ Notice: · · ·· · ·
· · ·

 ·
··
·

 =

··
·

▶ Asymmetric multiplication: Cache/Reuse multiplication with twiddle factors during base

multiplication.

Faster Kyber and Dilithium on the Cortex-M4 23rd June 2022 14 / 35

Optimization: Matrix-vector and inner product

Optimization based on technique presented in [Bec+21]:
▶ Recall base multiplication for Kyber: Let â = Âm,n, ŝ = ŝm. For ĉ = â ◦ ŝ

ĉ2i + ĉ2i+1X = (â2i + â2i+1X)(ŝ2i + ŝ2i+1X) mod (X 2 − ζ2br7(i)+1), with
ĉ2i = â2i ŝ2i + â2i+1ŝ2i+1ζ2br7(i)+1

ĉ2i+1 = â2i ŝ2i+1 + ŝ2i â2i+1

▶ Notice: · · ·· · ·
· · ·

 ·
··
·

 =

··
·

▶ Asymmetric multiplication: Cache/Reuse multiplication with twiddle factors during base

multiplication.

Faster Kyber and Dilithium on the Cortex-M4 23rd June 2022 14 / 35

Optimization: Matrix-vector and inner product

Optimization based on technique presented in [Bec+21]:
▶ Recall base multiplication for Kyber: Let â = Âm,n, ŝ = ŝm. For ĉ = â ◦ ŝ

ĉ2i + ĉ2i+1X = (â2i + â2i+1X)(ŝ2i + ŝ2i+1X) mod (X 2 − ζ2br7(i)+1), with
ĉ2i = â2i ŝ2i + â2i+1ŝ2i+1ζ2br7(i)+1

ĉ2i+1 = â2i ŝ2i+1 + ŝ2i â2i+1

▶ Notice: · · ·· · ·
· · ·

 ·
··
·

 =

··
·

▶ Asymmetric multiplication: Cache/Reuse multiplication with twiddle factors during base

multiplication.

Faster Kyber and Dilithium on the Cortex-M4 23rd June 2022 14 / 35

Kyber Algorithms

Algorithm: Kyber PKE key gen.
Output: public key: pk = (t̂, ρ)
Output: secret key: sk = (ŝ)

1 ρ, σ ∈ {0, 1}256 ← sampleUniform()
2 Â ∈ Rk×k

q ← sampleUniform(ρ)
3 s, e ∈ Rk×1

q ← sampleCBDη1(σ)
4 t̂← Â ◦ NTT(s) + NTT(e)
5 return (pk, sk)

Algorithm: Kyber PKE encryption
Input : public key: pk = (t̂, ρ)
Input : message: m ∈ Rq
Input : random coins: µ ∈ {0, 1}256

Output: ciphertext (u′, v ′)
1 Â ∈ Rk×k

q ← sampleUniform(ρ)
2 r ∈ Rk×1

q ← sampleCBDη1(µ)
3 e1 ∈ Rk×1

q , e2 ∈ Rq ← sampleCBDη2(µ)
4 r̂← NTT(r)
5 u← iNTT(ÂT ◦ r̂) + e1
6 v ← iNTT(t̂T ◦ r̂) + e2 + m
7 return (Compress(u), Compress(v))

Faster Kyber and Dilithium on the Cortex-M4 23rd June 2022 15 / 35

Kyber Algorithms

Algorithm: Kyber PKE key gen.
Output: public key: pk = (t̂, ρ)
Output: secret key: sk = (ŝ)

1 ρ, σ ∈ {0, 1}256 ← sampleUniform()
2 Â ∈ Rk×k

q ← sampleUniform(ρ)
3 s, e ∈ Rk×1

q ← sampleCBDη1(σ)
4 t̂← Â ◦ NTT(s) + NTT(e)
5 return (pk, sk)

Algorithm: Kyber PKE encryption
Input : public key: pk = (t̂, ρ)
Input : message: m ∈ Rq
Input : random coins: µ ∈ {0, 1}256

Output: ciphertext (u′, v ′)
1 Â ∈ Rk×k

q ← sampleUniform(ρ)
2 r ∈ Rk×1

q ← sampleCBDη1(µ)
3 e1 ∈ Rk×1

q , e2 ∈ Rq ← sampleCBDη2(µ)
4 r̂← NTT(r)
5 u← iNTT(ÂT ◦ r̂) + e1

6 v ← iNTT(t̂T ◦ r̂) + e2 + m
7 return (Compress(u), Compress(v))

Faster Kyber and Dilithium on the Cortex-M4 23rd June 2022 15 / 35

Optimization: Matrix-vector and inner product

Better accumulation based on [Chu+21]:
▶ Kyber’s small prime allows for accumulation without intermediate reductions in the

matrix-vector product.

Faster Kyber and Dilithium on the Cortex-M4 23rd June 2022 16 / 35

Section 3

Dilithium

Faster Kyber and Dilithium on the Cortex-M4 23rd June 2022 17 / 35

Dilithium

▶ Three different parameter sets: Dilithium2, Dilithium3, Dilithium5

Table: Overview of Dilithium’s parameter sets [Bai+20]

Scheme NIST level (k, l) η τ γ1 γ2 #reps | pk | | sig |

Dilithium2 2 (4, 4) 2 39 217 (q − 1)/88 4.25 1312 B 2420 B
Dilithium3 3 (6, 5) 4 49 219 (q − 1)/32 5.1 1952 B 3293 B
Dilithium5 5 (8, 7) 2 60 219 (q − 1)/32 3.85 2592 B 4595 B

▶ Same q, n for the three variants
⇒ nice for optimizing

▶ In contrast to Kyber, 2n-th primitive root of unity exists
⇒ Complete NTT

Faster Kyber and Dilithium on the Cortex-M4 23rd June 2022 18 / 35

Dilithium Algorithms

Algorithm: Dilithium key generation
Output: secret key

sk = (ρ, K , tr , s1, s2, t0)
Output: public key pk = (ρ, t1)

1 ρ, ς, K ∈ {0, 1}256 ←
sampleUniform();

2 s1 ∈ [−η, η]l×1, s2 ∈ [−η, η]k×1 ←
sampleUniform(ς) ;

3 Â ∈ Rk×l
q ← ExpandA(ρ);

4 t← iNTT(Â ◦ NTT(s1)) + s2;
5 (t1, t0)← Power2Round(t);
6 tr ∈ {0, 1}256 ← CRH(ρ∥t1);
7 return (pk, sk)

Algorithm: Dilithium verification
Input : public key pk = (ρ, t1)
Input : message: M ∈ {0, 1}∗
Input : signature σ = (z, h, c̃)
Output: signature valid or signature

invalid
1 Â ∈ Rk×l

q ← ExpandA(ρ);
2 c ← SampleInBall(c̃);
3 µ ∈ {0, 1}512 ← CRH(CRH(ρ∥t1)∥M);
4 w′

1 ← UseHint(h, iNTT(Â ◦ NTT(z)−
NTT(c) ◦ NTT(2d · t1)));

5 if ∥z∥∞ < γ1 − β and c̃ = H(µ∥w′
1)

and # of 1’s in h ≤ ω then
6 return signature valid;
7 else
8 return signature invalid;

Faster Kyber and Dilithium on the Cortex-M4 23rd June 2022 19 / 35

Dilithium Algorithms

Algorithm: Dilithium signing
Input : secret key sk = (ρ, K , tr , s1, s2, t0)
Input : message: M ∈ {0, 1}∗
Output: signature σ = (z, h, c̃)

1 Â ∈ Rk×l
q ← ExpandA(ρ);

2 µ ∈ {0, 1}512 ← CRH(tr∥M);
3 κ← 0, (z, h)←⊥;
4 ρ′ ∈ {0, 1}512 ← CRH(K∥µ);
5 ŝ1 ← NTT(s1), ŝ2 ← NTT(s2), t̂0 := NTT(t0);

6 while (z, h) =⊥ do
7 y ∈ Rl×1

q ← ExpandMask(ρ′, κ);
8 w← iNTT(Â ◦ NTT(y));
9 w1 ← HighBits(w, 2γ2);

10 c̃ ← H(µ∥w1;
11 c ← SampleInBall(c̃);
12 ĉ ← NTT(c);
13 z← y + iNTT(ĉ ◦ ŝ1);
14 r0 ← LowBits(w− iNTT(ĉ ◦ ŝ2), 2γ2);
15 if ∥z∥∞ ≥ γ1− β or ∥r0∥∞ ≥ γ2− β then
16 (z, h)←⊥
17 else
18 h← MakeHint(−iNTT(ĉ ◦ t̂0), w−

iNTT(ĉ ◦ ŝ2 + iNTT(ĉ ◦ t̂0)), 2γ2);
19 if ∥iNTT(ĉ ◦ t̂0)∥∞ ≥ γ2 or # of 1’s in

h > ω then
20 (z, h)←⊥
21 κ← κ + l ;
22 return σ = (z, h, c̃)

Faster Kyber and Dilithium on the Cortex-M4 23rd June 2022 20 / 35

Optimization: NTTs

Similar techniques as for Kyber:
▶ Better layer merging: Merge layers 7–5, 4–2, 1–0, instead of 7–6, 5–4, 3–2, 1–0.
▶ CT-Butterflies for iNTT

Faster Kyber and Dilithium on the Cortex-M4 23rd June 2022 21 / 35

Optimization: NTTs

Similar techniques as for Kyber:
▶ Better layer merging: Merge layers 7–5, 4–2, 1–0, instead of 7–6, 5–4, 3–2, 1–0.
▶ CT-Butterflies for iNTT

Faster Kyber and Dilithium on the Cortex-M4 23rd June 2022 21 / 35

Optimization: Small NTTs

▶ Recall: c consists of τ -many ±1s, s1, s2 have elements in [−η, η]
⇒ cs1 and cs2 bounded by τη
⇒ Regard computation as in Zq′ with q′ > 2τη [Chu+21]

▶ Some freedom for choosing q′

Table: Choosing q′

Scheme η τ 2τη q′

Dilithium2 2 39 156 F3 = 257
Dilithium3 4 49 392 769
Dilithium5 2 60 240 F3 = 257

Faster Kyber and Dilithium on the Cortex-M4 23rd June 2022 22 / 35

Optimization: Small NTTs

▶ Recall: c consists of τ -many ±1s, s1, s2 have elements in [−η, η]
⇒ cs1 and cs2 bounded by τη
⇒ Regard computation as in Zq′ with q′ > 2τη [Chu+21]

▶ Some freedom for choosing q′

Table: Choosing q′

Scheme η τ 2τη q′

Dilithium2 2 39 156 F3 = 257
Dilithium3 4 49 392 769
Dilithium5 2 60 240 F3 = 257

Faster Kyber and Dilithium on the Cortex-M4 23rd June 2022 22 / 35

Optimization: Small NTTs

▶ Recall: c consists of τ -many ±1s, s1, s2 have elements in [−η, η]
⇒ cs1 and cs2 bounded by τη
⇒ Regard computation as in Zq′ with q′ > 2τη [Chu+21]

▶ Some freedom for choosing q′

Table: Choosing q′

Scheme η τ 2τη q′

Dilithium2 2 39 156 F3 = 257
Dilithium3 4 49 392 769
Dilithium5 2 60 240 F3 = 257

Faster Kyber and Dilithium on the Cortex-M4 23rd June 2022 22 / 35

Optimization: Small NTTs

▶ Recall: c consists of τ -many ±1s, s1, s2 have elements in [−η, η]
⇒ cs1 and cs2 bounded by τη
⇒ Regard computation as in Zq′ with q′ > 2τη [Chu+21]

▶ Some freedom for choosing q′

Table: Choosing q′

Scheme η τ 2τη q′

Dilithium2 2 39 156 F3 = 257
Dilithium3 4 49 392 769
Dilithium5 2 60 240 F3 = 257

Faster Kyber and Dilithium on the Cortex-M4 23rd June 2022 22 / 35

FNT for Dilithium2 and Dilithium3

▶ CT-Butterfly: (a, b) 7→ (a + ωb, a − ωb) can be implemented with mla and mls
▶ First t = 3 layers have power of two twiddle factor

⇒ Efficient implementation without loading using barrel shifter and log ω as twiddle factor
Algorithm: CT_FNT(a, b, logW).
Input : (a, b) = (a, b)
Output: (a, b) = (a + 2logWb, a − 2logWb)

1 add a, a, b, lsl #logW;
2 sub b, a, b, lsl #(logW+1);

Faster Kyber and Dilithium on the Cortex-M4 23rd June 2022 23 / 35

Small NTT for Dilithium3

▶ Incompatible with FNT over F3
▶ Kyber NTT/iNTT with q′ = 769 and most reductions left out
▶ Experiments with q′ = F4 = 65537 yielding no speed-up over q′ = 769
▶ q′ = 3329 also possible for code re-use

Faster Kyber and Dilithium on the Cortex-M4 23rd June 2022 24 / 35

Section 4

Results

Faster Kyber and Dilithium on the Cortex-M4 23rd June 2022 25 / 35

Benchmarking Setup

▶ Based on pqm4
▶ Clock reduced to 24 MHz
▶ arm-none-eabi-gcc version 10.2.1 with -O3
▶ Keccak from pqm4
▶ Randomness from hardware RNG

Faster Kyber and Dilithium on the Cortex-M4 23rd June 2022 26 / 35

Benchmarking Setup

▶ Based on pqm4
▶ Clock reduced to 24 MHz
▶ arm-none-eabi-gcc version 10.2.1 with -O3
▶ Keccak from pqm4
▶ Randomness from hardware RNG

Faster Kyber and Dilithium on the Cortex-M4 23rd June 2022 26 / 35

Benchmarking Setup

▶ Based on pqm4
▶ Clock reduced to 24 MHz
▶ arm-none-eabi-gcc version 10.2.1 with -O3
▶ Keccak from pqm4
▶ Randomness from hardware RNG

Faster Kyber and Dilithium on the Cortex-M4 23rd June 2022 26 / 35

Benchmarking Setup

▶ Based on pqm4
▶ Clock reduced to 24 MHz
▶ arm-none-eabi-gcc version 10.2.1 with -O3
▶ Keccak from pqm4
▶ Randomness from hardware RNG

Faster Kyber and Dilithium on the Cortex-M4 23rd June 2022 26 / 35

Benchmarking Setup

▶ Based on pqm4
▶ Clock reduced to 24 MHz
▶ arm-none-eabi-gcc version 10.2.1 with -O3
▶ Keccak from pqm4
▶ Randomness from hardware RNG

Faster Kyber and Dilithium on the Cortex-M4 23rd June 2022 26 / 35

NTT related functions

Table: Cycle counts for transformation operations of Kyber and Dilithium. NTT and iNTT correspond to
the schemes default transformations, i.e., q = 3329 for Kyber and q = 8380417 for Dilithium. The NTT
with q = 257 is deployed for Dilithium2 and Dilithium5, and the NTT with q = 769 is used used for
Dilithium3.

Prime Implementation NTT iNTT basemul

Kyber q = 3329 [Alk+20] 6 852 6 979 2 317
This work 5 992 5 491/6 282a 1 613b

Dilithium

q = 8380417 [GKS20] 8 540 8 923 1 955
This work 8 093 8 415 1 955

q = 257 This work 5 524 5 563 1 225

q = 769 [Abd+21] (6-layer) 4 852 4 817 2 966
This work 5 200 5 537 1 740

a First value is for speed-optimization, second for stack-optimization.
b Asymmetric basemul as used in the IP (enc). As the basemul in the MVP and IP consists of

individual function calls, the cycle count is not straight forward to measure.
Faster Kyber and Dilithium on the Cortex-M4 23rd June 2022 27 / 35

Kyber: Matrix-vector and inner product

Table: Cycle counts for matrix-vector and inner products used in Kyber.

implementation variant operation Kyber-512 Kyber-768 Kyber-1024

pqm4

Matrix-Vector Producta 66 291 127 634 209 517
Matrix-Vector Productb 226 580 484 077 840 498
Inner Product (enc) 11 978 14 696 17 429
Inner Product (dec) 29 888 41 910 53 792

This work

speed

Matrix-Vector Producta 55 746 106 380 172 152
Matrix-Vector Productb 211 606 457 213 796 349
Inner Product (enc) 8 762 10 331 11 898
Inner Product (dec) 23 425 32 354 41 275

stack

Matrix-Vector Producta 58 028 112 503 184 149
Matrix-Vector Productb 214 053 463 590 808 206
Inner Product (enc) 11 218 13 877 16 733
Inner Product (dec) 24 722 34 167 43 619

a Measurement excluding the hashing.
b Measurement including the hashing.

Faster Kyber and Dilithium on the Cortex-M4 23rd June 2022 28 / 35

Kyber: Scheme performance

Table: Cycle counts and stack usage for Kyber for the key generation, encapsulation, and decapsulation.
Cycle counts are averaged over 100 executions.

implementation variant Kyber-512 Kyber-768 Kyber-1024
cc stack [B] cc stack [B] cc stack [B]

pqm4, [Alk+20]
K 458k 2 220 745k 3 100 1 188k 3 612
E 553k 2 308 899k 2 780 1 373k 3 292
D 513k 2 324 839k 2 804 1 294k 3 324

This work

speed
K 443k 4 272 718k 5 312 1 138k 6 336
E 536k 5 376 870k 6 416 1 324k 7 432
D 487k 5 384 796k 6 432 1 227k 7 448

stack
K 444k 2 220 724k 2 736 1 149k 3 256
E 540k 2 308 879k 2 808 1 341k 3 328
D 492k 2 324 807k 2 824 1 246k 3 352

Faster Kyber and Dilithium on the Cortex-M4 23rd June 2022 29 / 35

Dilithium: Scheme performance

Table: Cycle counts and stack usage for Dilithium. K, S, and V correspond to the key generation,
signature generation, and signature verification. Cycle counts are averaged over 10000 executions.

implementation variant Dilithium2 Dilithium3 Dilithium5
cc stack [B] cc stack [B] cc stack [B]

pqm4, [GKS20]
K 1 602k 38k 2 835k 61k 4 836k 98k
S 4 336k 49k 6 721k 74k 9 037k 115k
V 1 579k 36k 2 700k 58k 4 718k 93k

This work speed
K 1 596k 8 508 2 827k 9 540 4 829k 11 696
S 4 093k 49k 6 623k 69k 8 803k 116k
V 1 572k 36k 2 692k 58k 4 707k 93k

Faster Kyber and Dilithium on the Cortex-M4 23rd June 2022 30 / 35

Faster Kyber and Dilithium on the Cortex-M4

Amin Abdulrahman1,2 Vincent Hwang3,4 Matthias J. Kannwischer3 Amber
Sprenkels5

1Ruhr University Bochum, Germany

2Max Planck Institute for Security and Privacy, Bochum, Germany

3Academia Sinica, Taipei, Taiwan

4National Taiwan University, Taipei, Taiwan

5Digital Security Group, Radboud University, Nijmegen, The Netherlands

23rd June 2022

Faster Kyber and Dilithium on the Cortex-M4 23rd June 2022 31 / 35

Bibliography I

[Abd+21] Amin Abdulrahman et al. Multi-moduli NTTs for Saber on Cortex-M3 and
Cortex-M4. Cryptology ePrint Archive, Report 2021/995.
https://ia.cr/2021/995. 2021.

[Alk+20] Erdem Alkim et al. ‘Cortex-M4 Optimizations for {R,M}LWE Schemes’. In: IACR
Transactions on Cryptographic Hardware and Embedded Systems 2020.3 (June
2020), pp. 336–357. doi: 10.13154/tches.v2020.i3.336-357. url:
https://tches.iacr.org/index.php/TCHES/article/view/8593.

[Bai+20] Shi Bai et al. CRYSTALS-Dilithium: Algorithm Specifications And Supporting
Documentation (version 3.0). Submission to round 3 of the NIST post-quantum
project [Nat]. Oct. 2020.

[Bec+21] Hanno Becker et al. Neon NTT: Faster Dilithium, Kyber, and Saber on
Cortex-A72 and Apple M1. Cryptology ePrint Archive, Report 2021/986.
https://ia.cr/2021/986. 2021.

Faster Kyber and Dilithium on the Cortex-M4 23rd June 2022 32 / 35

https://ia.cr/2021/995
https://doi.org/10.13154/tches.v2020.i3.336-357
https://tches.iacr.org/index.php/TCHES/article/view/8593
https://ia.cr/2021/986

Bibliography II

[BKS19] Leon Botros, Matthias J. Kannwischer, and Peter Schwabe. ‘Memory-Efficient
High-Speed Implementation of Kyber on Cortex-M4’. In: Progress in Cryptology –
AFRICACRYPT 2019. Ed. by Johannes Buchmann, Abderrahmane Nitaj, and
Tajjeeddine Rachidi. Cham: Springer International Publishing, 2019, pp. 209–228.
isbn: 978-3-030-23696-0.

[Chu+21] Chi-Ming Marvin Chung et al. ‘NTT Multiplication for NTT-unfriendly Rings:
New Speed Records for Saber and NTRU on Cortex-M4 and AVX2’. In: IACR
Transactions on Cryptographic Hardware and Embedded Systems 2021.2 (Feb.
2021), pp. 159–188. doi: 10.46586/tches.v2021.i2.159-188. url:
https://tches.iacr.org/index.php/TCHES/article/view/8791.

Faster Kyber and Dilithium on the Cortex-M4 23rd June 2022 33 / 35

https://doi.org/10.46586/tches.v2021.i2.159-188
https://tches.iacr.org/index.php/TCHES/article/view/8791

Bibliography III

[GKS20] Denisa O. C. Greconici, Matthias J. Kannwischer, and Amber Sprenkels. ‘Compact
Dilithium Implementations on Cortex-M3 and Cortex-M4’. In: IACR Transactions
on Cryptographic Hardware and Embedded Systems 2021.1 (Dec. 2020),
pp. 1–24. doi: 10.46586/tches.v2021.i1.1-24. url:
https://tches.iacr.org/index.php/TCHES/article/view/8725.

[Nat] National Institute of Standards and Technology. Post-Quantum Cryptography
Standardization Project. Accessed: 2021-04-04. url:
https://csrc.nist.gov/projects/post-quantum-cryptography.

Faster Kyber and Dilithium on the Cortex-M4 23rd June 2022 34 / 35

https://doi.org/10.46586/tches.v2021.i1.1-24
https://tches.iacr.org/index.php/TCHES/article/view/8725
https://csrc.nist.gov/projects/post-quantum-cryptography

Backup

Faster Kyber and Dilithium on the Cortex-M4 23rd June 2022 35 / 35

	Introduction
	Kyber
	Kyber Optimizations

	Dilithium
	Dilithium Optimizations

	Results
	References

