Faster Kyber and Dilithium on the Cortex-M4

<u>Amin Abdulrahman^{1,2}</u> Vincent Hwang^{3,4} Matthias J. Kannwischer³ Amber Sprenkels⁵

¹Ruhr University Bochum, Germany

²Max Planck Institute for Security and Privacy, Bochum, Germany

³Academia Sinica, Taipei, Taiwan

⁴National Taiwan University, Taipei, Taiwan

⁵Digital Security Group, Radboud University, Nijmegen, The Netherlands

23rd June 2022

Section 1

Introduction

- ► Kyber, Dilithium
- Part of CRYSTALS
- ► NIST PQC round 3 finalists
- Lattice-based

- IND-CCA2 secure KEM
- Based on MLWE
- Built to profit from NTT

- Signature scheme that is strongly secure under CMA
- Based on Fiat-Shamir with Aborts, MSIS, and MLWE
- Operates on $\mathcal{R}_{8380417} = \mathbb{Z}_{8380417}[X]/(X^{256} + 1)$
- Built to profit from NTT

- IND-CCA2 secure KEM
- Based on MLWE
- Built to profit from NTT

- Signature scheme that is strongly secure under CMA
- Based on Fiat-Shamir with Aborts, MSIS, and MLWE
- Operates on $\mathcal{R}_{8380417} = \mathbb{Z}_{8380417}[X]/(X^{256} + 1)$
- Built to profit from NTT

- IND-CCA2 secure KEM
- Based on MLWE
- Built to profit from NTT

- Signature scheme that is strongly secure under CMA
- Based on Fiat-Shamir with Aborts, MSIS, and MLWE
- Operates on $\mathcal{R}_{8380417} = \mathbb{Z}_{8380417}[X]/(X^{256} + 1)$
- Built to profit from NTT

- IND-CCA2 secure KEM
- Based on MLWE
- Built to profit from NTT

- Signature scheme that is strongly secure under CMA
- Based on Fiat-Shamir with Aborts, MSIS, and MLWE
- Operates on $\mathcal{R}_{8380417} = \mathbb{Z}_{8380417}[X]/(X^{256} + 1)$
- Built to profit from NTT

- IND-CCA2 secure KEM
- Based on MLWE
- Built to profit from NTT

- Signature scheme that is strongly secure under CMA
- Based on Fiat-Shamir with Aborts, MSIS, and MLWE
- Operates on $\mathcal{R}_{8380417} = \mathbb{Z}_{8380417}[X]/(X^{256} + 1)$
- Built to profit from NTT

- IND-CCA2 secure KEM
- Based on MLWE
- Built to profit from NTT

- Signature scheme that is strongly secure under CMA
- Based on Fiat-Shamir with Aborts, MSIS, and MLWE
- Operates on $\mathcal{R}_{8380417} = \mathbb{Z}_{8380417}[X]/(X^{256} + 1)$
- Built to profit from NTT

- IND-CCA2 secure KEM
- Based on MLWE
- Built to profit from NTT

- Signature scheme that is strongly secure under CMA
- Based on Fiat-Shamir with Aborts, MSIS, and MLWE
- Operates on $\mathcal{R}_{8380417} = \mathbb{Z}_{8380417}[X]/(X^{256} + 1)$
- Built to profit from NTT

- IND-CCA2 secure KEM
- Based on MLWE
- Built to profit from NTT

- Signature scheme that is strongly secure under CMA
- Based on Fiat-Shamir with Aborts, MSIS, and MLWE
- Operates on $\mathcal{R}_{8380417} = \mathbb{Z}_{8380417}[X]/(X^{256} + 1)$
- Built to profit from NTT

Variant of the DFT defined over finite fields

▶ Negacyclic NTT \triangleq Evaluation of polynomial at powers of primitive *n*-th root of unity ζ_n for \mathcal{R}_q followed by twisting with powers of 2n-th root of unity ζ_{2n} .

$$NTT(a) = \hat{a} = \sum_{i=0}^{n-1} \hat{a}_i X^i \text{ with } \hat{a}_i = \sum_{j=0}^{n-1} a_j \zeta_{2n}^j \zeta_n^{ij}$$
$$iNTT(\hat{a}) = a = \sum_{i=0}^{n-1} a_i X^i \text{ with } a_i = n^{-1} \zeta_{2n}^{-i} \sum_{j=0}^{n-1} \hat{a}_j \zeta_n^{-ij}$$

▶ Efficient NTT using Cooley–Tukey or Gentleman–Sande FFT algorithms
 ▶ Fast polynomial multiplication: Let f, g ∈ R_q and ∘ be base multiplication in R_q

 $f \circ b = iNTT(NTT(f) \circ NTT(g))$

- Variant of the DFT defined over finite fields
- Negacyclic NTT [△] = Evaluation of polynomial at powers of primitive *n*-th root of unity ζ_n for R_q followed by twisting with powers of 2*n*-th root of unity ζ_{2n}.

$$NTT(a) = \hat{a} = \sum_{i=0}^{n-1} \hat{a}_i X^i \text{ with } \hat{a}_i = \sum_{j=0}^{n-1} a_j \zeta_{2n}^j \zeta_n^{ij}$$
$$iNTT(\hat{a}) = a = \sum_{i=0}^{n-1} a_i X^i \text{ with } a_i = n^{-1} \zeta_{2n}^{-i} \sum_{j=0}^{n-1} \hat{a}_j \zeta_n^{-ij}$$

▶ Efficient NTT using Cooley–Tukey or Gentleman–Sande FFT algorithms
 ▶ Fast polynomial multiplication: Let f, g ∈ R_q and ∘ be base multiplication in R_q

 $f \circ b = iNTT(NTT(f) \circ NTT(g))$

- Variant of the DFT defined over finite fields
- Negacyclic NTT [△] = Evaluation of polynomial at powers of primitive *n*-th root of unity ζ_n for R_q followed by twisting with powers of 2*n*-th root of unity ζ_{2n}.

$$NTT(a) = \hat{a} = \sum_{i=0}^{n-1} \hat{a}_i X^i \text{ with } \hat{a}_i = \sum_{j=0}^{n-1} a_j \zeta_{2n}^j \zeta_n^{ij}$$
$$iNTT(\hat{a}) = a = \sum_{i=0}^{n-1} a_i X^i \text{ with } a_i = n^{-1} \zeta_{2n}^{-i} \sum_{j=0}^{n-1} \hat{a}_j \zeta_n^{-ij}$$

▶ Efficient NTT using Cooley–Tukey or Gentleman–Sande FFT algorithms
 ▶ Fast polynomial multiplication: Let f, g ∈ R_q and ∘ be base multiplication in R_q

 $f \circ b = iNTT(NTT(f) \circ NTT(g))$

- Variant of the DFT defined over finite fields
- Negacyclic NTT [△] Evaluation of polynomial at powers of primitive *n*-th root of unity ζ_n for R_q followed by twisting with powers of 2*n*-th root of unity ζ_{2n}.

$$NTT(a) = \hat{a} = \sum_{i=0}^{n-1} \hat{a}_i X^i \text{ with } \hat{a}_i = \sum_{j=0}^{n-1} a_j \zeta_{2n}^j \zeta_n^{ij}$$
$$iNTT(\hat{a}) = a = \sum_{i=0}^{n-1} a_i X^i \text{ with } a_i = n^{-1} \zeta_{2n}^{-i} \sum_{j=0}^{n-1} \hat{a}_j \zeta_n^{-ij}$$

- Efficient NTT using Cooley–Tukey or Gentleman–Sande FFT algorithms
- ▶ Fast polynomial multiplication: Let $f, g \in \mathcal{R}_q$ and \circ be base multiplication in \mathcal{R}_q

$$f \circ b = iNTT(NTT(f) \circ NTT(g))$$

- Special case of the NTT with modulus a Fermat number $F_t := 2^{2^t} + 1$
- For F_t prime: Cyclic transformations up to $n = 2^{2^t} = F_t 1$, negacyclic transformations up to $n = 2^{2^t-1}$
 - \Rightarrow Twiddles on first *t* layers are powers of two
 - \Rightarrow No multiplication, only shifting
- ▶ Prime Fermat numbers: $F_0 = 3$, $F_1 = 5$, $F_2 = 17$, $F_3 = 257$, $F_4 = 65537$

- Special case of the NTT with modulus a Fermat number $F_t := 2^{2^t} + 1$
- For F_t prime: Cyclic transformations up to $n = 2^{2^t} = F_t 1$, negacyclic transformations up to $n = 2^{2^t-1}$
 - \Rightarrow Twiddles on first *t* layers are powers of two
 - \Rightarrow No multiplication, only shifting
- ▶ Prime Fermat numbers: $F_0 = 3$, $F_1 = 5$, $F_2 = 17$, $F_3 = 257$, $F_4 = 65537$

- Special case of the NTT with modulus a Fermat number $F_t := 2^{2^t} + 1$
- For F_t prime: Cyclic transformations up to $n = 2^{2^t} = F_t 1$, negacyclic transformations up to $n = 2^{2^t-1}$
 - \Rightarrow Twiddles on first *t* layers are powers of two
 - \Rightarrow No multiplication, only shifting
- ▶ Prime Fermat numbers: $F_0 = 3$, $F_1 = 5$, $F_2 = 17$, $F_3 = 257$, $F_4 = 65537$

- Special case of the NTT with modulus a Fermat number $F_t := 2^{2^t} + 1$
- For F_t prime: Cyclic transformations up to $n = 2^{2^t} = F_t 1$, negacyclic transformations up to $n = 2^{2^t-1}$
 - \Rightarrow Twiddles on first *t* layers are powers of two
 - \Rightarrow No multiplication, only shifting
- ▶ Prime Fermat numbers: $F_0 = 3$, $F_1 = 5$, $F_2 = 17$, $F_3 = 257$, $F_4 = 65537$

- Special case of the NTT with modulus a Fermat number $F_t := 2^{2^t} + 1$
- For F_t prime: Cyclic transformations up to $n = 2^{2^t} = F_t 1$, negacyclic transformations up to $n = 2^{2^t-1}$
 - \Rightarrow Twiddles on first *t* layers are powers of two
 - \Rightarrow No multiplication, only shifting
- ▶ Prime Fermat numbers: $F_0 = 3$, $F_1 = 5$, $F_2 = 17$, $F_3 = 257$, $F_4 = 65537$

Hardware target: STM32F407-DISCOVERY with STM32-F407VG MCU

- 1 MiB flash, 192 KiB
- Based on Armv7E-M
- ▶ 14 usable general purpose registers
- ▶ 32 single-precision floating-point registers
- Powerful DSP with useful SIMD instructions taking one cycle
 - e.g., smul{b,t}{b,t}, smlad{,x}

- Hardware target: STM32F407-DISCOVERY with STM32-F407VG MCU
- 1 MiB flash, 192 KiB
- Based on Armv7E-M
- ▶ 14 usable general purpose registers
- ▶ 32 single-precision floating-point registers
- Powerful DSP with useful SIMD instructions taking one cycle
 - e.g., smul{b,t}{b,t}, smlad{,x}

- Hardware target: STM32F407-DISCOVERY with STM32-F407VG MCU
- 1 MiB flash, 192 KiB
- Based on Armv7E-M
- ▶ 14 usable general purpose registers
- ▶ 32 single-precision floating-point registers
- Powerful DSP with useful SIMD instructions taking one cycle
 - e.g., smul{b,t}{b,t}, smlad{,x}

- Hardware target: STM32F407-DISCOVERY with STM32-F407VG MCU
- 1 MiB flash, 192 KiB
- Based on Armv7E-M
- 14 usable general purpose registers
- 32 single-precision floating-point registers
- Powerful DSP with useful SIMD instructions taking one cycle
 - e.g., smul{b,t}{b,t}, smlad{,x}

- Hardware target: STM32F407-DISCOVERY with STM32-F407VG MCU
- 1 MiB flash, 192 KiB
- Based on Armv7E-M
- 14 usable general purpose registers
- 32 single-precision floating-point registers
- Powerful DSP with useful SIMD instructions taking one cycle
 A group of the second s

- Hardware target: STM32F407-DISCOVERY with STM32-F407VG MCU
- 1 MiB flash, 192 KiB
- Based on Armv7E-M
- 14 usable general purpose registers
- ► 32 single-precision floating-point registers
- Powerful DSP with useful SIMD instructions taking one cycle
 - e.g., smul{b,t}{b,t}, smlad{,x}

- Hardware target: STM32F407-DISCOVERY with STM32-F407VG MCU
- 1 MiB flash, 192 KiB
- Based on Armv7E-M
- 14 usable general purpose registers
- ► 32 single-precision floating-point registers
- Powerful DSP with useful SIMD instructions taking one cycle
 - e.g., smul{b,t}{b,t}, smlad{,x}

Section 2

Kyber

▶ Three different parameter sets: Kyber-512, Kyber-768, and Kyber-1024.

Same q, n for the three variants
⇒ nice for optimizing

▶ No 2*n*-th but only *n*-th primitive root of unity

- \Rightarrow 7 layer incomplete NTT
- $\Rightarrow~2 imes 2$ schoolbook multiplications modulo $(X^2-\omega)$

- ▶ Three different parameter sets: Kyber-512, Kyber-768, and Kyber-1024.
- Same q, n for the three variants
 - \Rightarrow nice for optimizing
- ▶ No 2*n*-th but only *n*-th primitive root of unity
 - \Rightarrow 7 layer incomplete NTT
 - $\Rightarrow~2 imes 2$ schoolbook multiplications modulo $(X^2-\omega)$

- ▶ Three different parameter sets: Kyber-512, Kyber-768, and Kyber-1024.
- Same q, n for the three variants
 - \Rightarrow nice for optimizing
- No 2n-th but only n-th primitive root of unity
 - \Rightarrow 7 layer incomplete NTT
 - $\Rightarrow~2 imes 2$ schoolbook multiplications modulo $(X^2-\omega)$

- Three different parameter sets: Kyber-512, Kyber-768, and Kyber-1024.
- Same q, n for the three variants
 - $\Rightarrow\,$ nice for optimizing
- No 2n-th but only n-th primitive root of unity
 - \Rightarrow 7 layer incomplete NTT
 - \Rightarrow 2 × 2 schoolbook multiplications modulo ($X^2 \omega$)

- Three different parameter sets: Kyber-512, Kyber-768, and Kyber-1024.
- Same q, n for the three variants
 - $\Rightarrow\,$ nice for optimizing
- ▶ No 2*n*-th but only *n*-th primitive root of unity
 - \Rightarrow 7 layer incomplete NTT
 - \Rightarrow 2 imes 2 schoolbook multiplications modulo ($X^2 \omega$)

- Three different parameter sets: Kyber-512, Kyber-768, and Kyber-1024.
- Same q, n for the three variants
 - $\Rightarrow\,$ nice for optimizing
- No 2n-th but only n-th primitive root of unity
 - \Rightarrow 7 layer incomplete NTT
 - \Rightarrow 2 × 2 schoolbook multiplications modulo (X² ω)

Algorithm: Kyber PKE key gen.Output: public key: $pk = (\hat{\mathbf{t}}, \rho)$ Output: secret key: $sk = (\hat{\mathbf{s}})$ 1 $\rho, \sigma \in \{0, 1\}^{256} \leftarrow \text{sampleUniform}()$ 2 $\hat{\mathbf{A}} \in \mathcal{R}_q^{k \times k} \leftarrow \text{sampleUniform}(\rho)$ 3 $\mathbf{s}, \mathbf{e} \in \mathcal{R}_q^{k \times 1} \leftarrow \text{sampleCBD}^{\eta_1}(\sigma)$ 4 $\hat{\mathbf{t}} \leftarrow \hat{\mathbf{A}} \circ \text{NTT}(\mathbf{s}) + \text{NTT}(\mathbf{e})$ 5 return $(\rho k, sk)$

Algorithm: Kyber PKE decryptionInput : secret key: $sk = (\hat{s})$ Input : compressed ciphertext: (u', v')Output: message $m \in \mathcal{R}_q$ 1 $u \leftarrow Decompress(u')$ 2 $v \leftarrow Decompress(v')$ 3 return $m \leftarrow v - iNTT(\hat{s}^T \circ NTT(u))$

Algorithm: Kyber PKE encryption **Input** : public key: $pk = (\hat{\mathbf{t}}, \rho)$ **Input** : message: $m \in \mathcal{R}_a$ **Input** : random coins: $\mu \in \{0, 1\}^{256}$ **Output:** ciphertext $(\mathbf{u}', \mathbf{v}')$ 1 $\hat{\mathbf{A}} \in \mathcal{R}_{a}^{k \times k} \leftarrow \texttt{sampleUniform}(\rho)$ 2 $\mathbf{r} \in \mathcal{R}_{a}^{k \times 1} \leftarrow \text{sampleCBD}^{\eta_{1}}(\mu)$ $\mathbf{s} \ \mathbf{e}_1 \in \mathcal{R}_{a}^{k \times 1}, e_2 \in \mathcal{R}_{a} \leftarrow \texttt{sampleCBD}^{\eta_2}(\mu)$ 4 $\hat{\mathbf{r}} \leftarrow \mathrm{NTT}(\mathbf{r})$ 5 $\mathbf{u} \leftarrow iNTT(\hat{\mathbf{A}}^T \circ \hat{\mathbf{r}}) + \mathbf{e}_1$ 6 $\mathbf{v} \leftarrow \mathrm{iNTT}(\hat{\mathbf{t}}^T \circ \hat{\mathbf{r}}) + \mathbf{e}_2 + m$ 7 return (Compress(u), Compress(v))

- Caching in FPU registers: Store reusable values in floating point registers to avoid loading from memory
- CT-Butterflies for iNTT: Avoid intermediate reductions
- Better layer merging: Merge layers 7–4, 3–1 instead of 7–5, 4–2, and computing layer 1 separately
- Caching in FPU registers: Store reusable values in floating point registers to avoid loading from memory
- CT-Butterflies for iNTT: Avoid intermediate reductions
- Better layer merging: Merge layers 7–4, 3–1 instead of 7–5, 4–2, and computing layer 1 separately

- Caching in FPU registers: Store reusable values in floating point registers to avoid loading from memory
- CT-Butterflies for iNTT: Avoid intermediate reductions
- Better layer merging: Merge layers 7–4, 3–1 instead of 7–5, 4–2, and computing layer 1 separately

Algorithm: Kyber PKE key gen.Output: public key: $pk = (\hat{\mathbf{t}}, \rho)$ Output: secret key: $sk = (\hat{\mathbf{s}})$ 1 $\rho, \sigma \in \{0,1\}^{256} \leftarrow \text{sampleUniform}()$ 2 $\hat{\mathbf{A}} \in \mathcal{R}_q^{k \times k} \leftarrow \text{sampleUniform}(\rho)$ 3 $\mathbf{s}, \mathbf{e} \in \mathcal{R}_q^{k \times 1} \leftarrow \text{sampleCBD}^{\eta_1}(\sigma)$ 4 $\hat{\mathbf{t}} \leftarrow \hat{\mathbf{A}} \circ \text{NTT}(\mathbf{s}) + \text{NTT}(\mathbf{e})$ 5 return (pk, sk)

Algorithm: Kyber PKE decryptionInput : secret key: $sk = (\hat{s})$ Input : compressed ciphertext: (\mathbf{u}', v') Output: message $m \in \mathcal{R}_q$ 1 $\mathbf{u} \leftarrow \text{Decompress}(\mathbf{u}')$ 2 $v \leftarrow \text{Decompress}(v')$ 3 return $m \leftarrow v - \text{iNTT}(\hat{s}^T \circ \text{NTT}(\mathbf{u}))$

Algorithm: Kyber PKE encryption **Input** : public key: $pk = (\hat{\mathbf{t}}, \rho)$ **Input** : message: $m \in \mathcal{R}_a$ **Input** : random coins: $\mu \in \{0, 1\}^{256}$ **Output:** ciphertext $(\mathbf{u}', \mathbf{v}')$ 1 $\hat{\mathbf{A}} \in \mathcal{R}_{\sigma}^{k \times k} \leftarrow \text{sampleUniform}(\rho)$ 2 $\mathbf{r} \in \mathcal{R}_{a}^{k \times 1} \leftarrow \text{sampleCBD}^{\eta_{1}}(\mu)$ **3** $\mathbf{e}_1 \in \mathcal{R}_{a}^{k \times 1}, e_2 \in \mathcal{R}_{a} \leftarrow \text{sampleCBD}^{\eta_2}(\mu)$ 4 $\hat{\mathbf{r}} \leftarrow \text{NTT}(\mathbf{r})$ 5 $\mathbf{u} \leftarrow \mathbf{i} \mathbf{NTT} (\hat{\mathbf{A}}^T \circ \hat{\mathbf{r}}) + \mathbf{e}_1$ 6 $v \leftarrow \text{iNTT}(\hat{\mathbf{t}}^T \circ \hat{\mathbf{r}}) + e_2 + m$ 7 return (Compress(u), Compress(v))

	Algorithm:	Packed	Barrett	Reduc-
	tion [BKS19]			
	Input : a =	$(a_t a_b)$		
	Output: $c =$	$(c_t c_b)$ i	$mod\ ^\pm q$	
1	$\verb+smulbb t_0, a,$	$\lfloor \frac{2^{26}}{q} \rfloor$		
2	smultb $t_1, a,$	$\lfloor \frac{2^{26}}{q} \rceil$		
3	asr $t_0, t_0, \#2$	26		
4	asr $t_1, t_1, \#2$	26		
5	smulbb t_0, t_0	, q		
6	$\texttt{smulbb} \ t_1, t_1$, q		
7	$\texttt{pkhbt} \ t_0, t_0,$	t_1, lsl #1	6	
8	usub16 r, a, t	0		

 Algorithm: Improved Packed Barrett Reduction

 Input : $a = (a_t || a_b)$

 Output: $c = (c_t || c_b) \mod \pm q$

 1 smlawb $t_0, -\lfloor \frac{2^{32}}{q} \rceil, a, 2^{15}$

 2 smlabt t_0, q, t_0, a

 3 smlawt $t_1, -\lfloor \frac{2^{32}}{q} \rceil, a, 2^{15}$

 4 smulbt t_1, q, t_1

 5 add $t_1, a, t_1, 1$ sl #16

 6 pkhbt $c, t_0, t_1, 1$ sl #16

▶ Note: Output range not in [0, q) but $\left[-\frac{q-1}{2}, \frac{q-1}{2}\right]$ for odd q

Optimization based on technique presented in [Bec+21]:

▶ Recall base multiplication for Kyber: Let $\hat{a} = \hat{A}_{m,n}, \hat{s} = \hat{s}_m$. For $\hat{c} = \hat{a} \circ \hat{s}$

$$\begin{aligned} \hat{c}_{2i} + \hat{c}_{2i+1}X &= (\hat{a}_{2i} + \hat{a}_{2i+1}X)(\hat{s}_{2i} + \hat{s}_{2i+1}X) \mod (X^2 - \zeta^{2\mathsf{br}_7(i)+1}), \text{ with } \\ \hat{c}_{2i} &= \hat{a}_{2i}\hat{s}_{2i} + \hat{a}_{2i+1}\hat{s}_{2i+1}\zeta^{2\mathsf{br}_7(i)+1} \\ \hat{c}_{2i+1} &= \hat{a}_{2i}\hat{s}_{2i+1} + \hat{s}_{2i}\hat{a}_{2i+1} \end{aligned}$$

Notice:

Optimization based on technique presented in [Bec+21]:

▶ Recall base multiplication for Kyber: Let $\hat{a} = \hat{A}_{m,n}, \hat{s} = \hat{s}_m$. For $\hat{c} = \hat{a} \circ \hat{s}$

$$\begin{aligned} \hat{c}_{2i} + \hat{c}_{2i+1}X &= (\hat{a}_{2i} + \hat{a}_{2i+1}X)(\hat{s}_{2i} + \hat{s}_{2i+1}X) \mod (X^2 - \zeta^{2\mathsf{br}_7(i)+1}), \text{ with } \\ \hat{c}_{2i} &= \hat{a}_{2i}\hat{s}_{2i} + \hat{a}_{2i+1}\hat{s}_{2i+1}\zeta^{2\mathsf{br}_7(i)+1} \\ \hat{c}_{2i+1} &= \hat{a}_{2i}\hat{s}_{2i+1} + \hat{s}_{2i}\hat{a}_{2i+1} \end{aligned}$$

Notice:

Optimization based on technique presented in [Bec+21]:

▶ Recall base multiplication for Kyber: Let $\hat{a} = \hat{A}_{m,n}, \hat{s} = \hat{s}_m$. For $\hat{c} = \hat{a} \circ \hat{s}$

$$\begin{aligned} \hat{c}_{2i} + \hat{c}_{2i+1}X &= (\hat{a}_{2i} + \hat{a}_{2i+1}X)(\hat{s}_{2i} + \hat{s}_{2i+1}X) \mod (X^2 - \zeta^{2\mathsf{br}_7(i)+1}), \text{ with } \\ \hat{c}_{2i} &= \hat{a}_{2i}\hat{s}_{2i} + \hat{a}_{2i+1}\hat{s}_{2i+1}\zeta^{2\mathsf{br}_7(i)+1} \\ \hat{c}_{2i+1} &= \hat{a}_{2i}\hat{s}_{2i+1} + \hat{s}_{2i}\hat{a}_{2i+1} \end{aligned}$$

Notice:

Optimization based on technique presented in [Bec+21]:

▶ Recall base multiplication for Kyber: Let $\hat{a} = \hat{A}_{m,n}, \hat{s} = \hat{s}_m$. For $\hat{c} = \hat{a} \circ \hat{s}$

$$\begin{aligned} \hat{c}_{2i} + \hat{c}_{2i+1}X &= (\hat{a}_{2i} + \hat{a}_{2i+1}X)(\hat{s}_{2i} + \hat{s}_{2i+1}X) \mod (X^2 - \zeta^{2\mathsf{br}_7(i)+1}), \text{ with } \\ \hat{c}_{2i} &= \hat{a}_{2i}\hat{s}_{2i} + \hat{a}_{2i+1}\hat{s}_{2i+1}\zeta^{2\mathsf{br}_7(i)+1} \\ \hat{c}_{2i+1} &= \hat{a}_{2i}\hat{s}_{2i+1} + \hat{s}_{2i}\hat{a}_{2i+1} \end{aligned}$$

Notice:

-	•	·]	•		[]
•	•	•	·	=	$ \cdot $
·	•	·	·		·

Algorithm: Kyber PKE key gen.Output: public key: $pk = (\hat{\mathbf{t}}, \rho)$ Output: secret key: $sk = (\hat{\mathbf{s}})$ 1 $\rho, \sigma \in \{0, 1\}^{256} \leftarrow \text{sampleUniform}()$ 2 $\hat{\mathbf{A}} \in \mathcal{R}_q^{k \times k} \leftarrow \text{sampleUniform}(\rho)$ 3 $\mathbf{s}, \mathbf{e} \in \mathcal{R}_q^{k \times 1} \leftarrow \text{sampleCBD}^{\eta_1}(\sigma)$ 4 $\hat{\mathbf{t}} \leftarrow \hat{\mathbf{A}} \circ \text{NTT}(\mathbf{s}) + \text{NTT}(\mathbf{e})$ 5 return (pk, sk)

Algorithm: Kyber PKE encryption **Input** : public key: $pk = (\hat{\mathbf{t}}, \rho)$ **Input** : message: $m \in \mathcal{R}_{a}$ **Input** : random coins: $\mu \in \{0, 1\}^{256}$ **Output:** ciphertext $(\mathbf{u}', \mathbf{v}')$ 1 $\hat{\mathbf{A}} \in \mathcal{R}_{q}^{k \times k} \leftarrow \texttt{sampleUniform}(\rho)$ 2 $\mathbf{r} \in \mathcal{R}_{\sigma}^{k \times 1} \leftarrow \text{sampleCBD}^{\eta_1}(\mu)$ 3 $\mathbf{e}_1 \in \mathcal{R}^{k \times 1}_{a}, e_2 \in \mathcal{R}_a \leftarrow \texttt{sampleCBD}^{\eta_2}(\mu)$ 4 $\hat{\mathbf{r}} \leftarrow \mathrm{NTT}(\mathbf{r})$ 5 $\mathbf{u} \leftarrow iNTT(\hat{\mathbf{A}}^T \circ \hat{\mathbf{r}}) + \mathbf{e}_1$ 6 $v \leftarrow iNTT(\hat{\mathbf{t}}^T \circ \hat{\mathbf{r}}) + e_2 + m$ 7 return (Compress(u), Compress(v))

Algorithm: Kyber PKE key gen.Output: public key: $pk = (\hat{\mathbf{t}}, \rho)$ Output: secret key: $sk = (\hat{\mathbf{s}})$ 1 $\rho, \sigma \in \{0, 1\}^{256} \leftarrow \text{sampleUniform}()$ 2 $\hat{\mathbf{A}} \in \mathcal{R}_q^{k \times k} \leftarrow \text{sampleUniform}(\rho)$ 3 $\mathbf{s}, \mathbf{e} \in \mathcal{R}_q^{k \times 1} \leftarrow \text{sampleCBD}^{\eta_1}(\sigma)$ 4 $\hat{\mathbf{t}} \leftarrow \hat{\mathbf{A}} \circ \text{NTT}(\mathbf{s}) + \text{NTT}(\mathbf{e})$ 5 return (pk, sk)

Algorithm: Kyber PKE encryption **Input** : public key: $pk = (\hat{\mathbf{t}}, \rho)$ **Input** : message: $m \in \mathcal{R}_a$ **Input** : random coins: $\mu \in \{0, 1\}^{256}$ **Output:** ciphertext $(\mathbf{u}', \mathbf{v}')$ 1 $\hat{\mathbf{A}} \in \mathcal{R}_{a}^{k \times k} \leftarrow \texttt{sampleUniform}(\rho)$ 2 $\mathbf{r} \in \mathcal{R}_{a}^{k \times 1} \leftarrow \texttt{sampleCBD}^{\eta_{1}}(\mu)$ 3 $\mathbf{e}_1 \in \mathcal{R}_a^{k imes 1}, e_2 \in \mathcal{R}_a \leftarrow \texttt{sampleCBD}^{\eta_2}(\mu)$ 4 $\hat{\mathbf{r}} \leftarrow \mathrm{NTT}(\mathbf{r})$ 5 $\mathbf{u} \leftarrow \text{iNTT}(\hat{\mathbf{A}}^T \circ \hat{\mathbf{r}}) + \mathbf{e}_1$ 6 $v \leftarrow i NTT (\hat{\mathbf{t}}^T \circ \hat{\mathbf{r}}) + e_2 + m$ 7 return (Compress(u), Compress(v))

Better accumulation based on [Chu+21]:

Kyber's small prime allows for accumulation without intermediate reductions in the matrix-vector product.

Section 3

Dilithium

Three different parameter sets: Dilithium2, Dilithium3, Dilithium5

Table: Overview of Dilithium's parameter sets [Bai+20]

Scheme	NIST level	(k, l)	η	au	γ_1	γ_2	#reps	pk	sig
Dilithium2	2	(4,4)	2	39	2^{17}	(q - 1)/88	4.25	1312 B	2420 B
Dilithium3	3	(6, 5)	4	49	2^{19}	(q-1)/32	5.1	1952 B	3293 B
Dilithium5	5	(8,7)	2	60	2^{19}	(q-1)/32	3.85	2592 B	4595 B

Same q, n for the three variants

 \Rightarrow nice for optimizing

▶ In contrast to Kyber, 2*n*-th primitive root of unity exists

 \Rightarrow Complete NTT

Algorithm: Dilithium key generation **Output:** secret key $sk = (\rho, K, tr, \mathbf{s}_1, \mathbf{s}_2, \mathbf{t}_0)$ **Output:** public key $pk = (\rho, \mathbf{t}_1)$ 1 $\rho, \varsigma, K \in \{0, 1\}^{256} \leftarrow$ sampleUniform(); **2** $\mathbf{s}_1 \in [-n, n]^{l \times 1}, \mathbf{s}_2 \in [-n, n]^{k \times 1} \leftarrow$ sampleUniform(ς); 3 $\hat{\mathbf{A}} \in \mathcal{R}_{\alpha}^{k \times l} \leftarrow \text{ExpandA}(\rho)$; 4 $\mathbf{t} \leftarrow iNTT(\hat{\mathbf{A}} \circ NTT(\mathbf{s}_1)) + \mathbf{s}_2$: 5 $(\mathbf{t}_1, \mathbf{t}_0) \leftarrow \text{Power2Round}(\mathbf{t})$: **6** $tr \in \{0, 1\}^{256} \leftarrow \text{CRH}(\rho \| \mathbf{t}_1);$ 7 return (pk, sk)

Algorithm: Dilithium verification **Input** : public key $pk = (\rho, \mathbf{t}_1)$ **Input** : message: $M \in \{0, 1\}^*$ **Input** : signature $\sigma = (\mathbf{z}, \mathbf{h}, \tilde{c})$ **Output:** signature valid or signature invalid 1 $\hat{\mathbf{A}} \in \mathcal{R}_{a}^{k \times l} \leftarrow \text{ExpandA}(\rho);$ 2 $c \leftarrow \text{SampleInBall}(\tilde{c})$: 3 $\mu \in \{0, 1\}^{512} \leftarrow \operatorname{CRH}(\operatorname{CRH}(\rho \| \mathbf{t}_1) \| M)$: 4 $\mathbf{w}'_1 \leftarrow \text{UseHint}(\mathbf{h}, \text{iNTT}(\hat{\mathbf{A}} \circ \text{NTT}(\mathbf{z}) - \mathbf{w}'_1)$ $NTT(c) \circ NTT(2^d \cdot \mathbf{t}_1))$: 5 if $\|\mathbf{z}\|_{\infty} < \gamma_1 - \beta$ and $\tilde{c} = H(\mu \| \mathbf{w}_1')$ and # of 1's in $\mathbf{h} < \omega$ then return signature valid; 6 7 else return signature invalid; 8

Dilithium Algorithms

Algorithm: Dilithium signing

	Input : secret key $sk = (\rho, K, tr, \mathbf{s}_1, \mathbf{s}_2, \mathbf{t}_0)$	6 \	while $(z, h) = \perp$ do
	Input : message: $M \in \{0,1\}^*$	7	$\mathbf{y} \in \mathcal{R}_{m{q}}^{l imes 1} \leftarrow extsf{ExpandMask}(ho', \kappa);$
	Output: signature $\sigma = (z, h, \tilde{c})$	8	$\mathbf{w} \leftarrow \mathtt{iNTT}(\hat{\mathbf{A}} \circ \mathtt{NTT}(\mathbf{y}));$
1	$\hat{A} \in \mathcal{R}_{q}^{k imes l} \leftarrow \mathtt{Expand} \mathtt{A}(ho);$	9	$\mathbf{w}_1 \leftarrow \texttt{HighBits}(\mathbf{w}, 2\gamma_2);$
2	$\mu \in \{0,1\}^{512} \leftarrow ext{CRH}(tr \ M);$	10	$\widetilde{c} \leftarrow \mathtt{H}(\mu \ \mathbf{w}_1;$
3	$\kappa \leftarrow 0, (z, h) \leftarrow \perp;$	11	$c \leftarrow \texttt{SampleInBall}(ilde{c});$
4	$ ho' \in \{0,1\}^{512} \leftarrow ext{CRH}(m{K} \ \mu);$	12	$\hat{c} \leftarrow \operatorname{NTT}(c);$
5	$\hat{\mathbf{s}}_1 \leftarrow \texttt{NTT}(\mathbf{s}_1), \ \hat{\mathbf{s}}_2 \leftarrow \texttt{NTT}(\mathbf{s}_2), \ \hat{\mathbf{t}}_0 := \texttt{NTT}(\mathbf{t}_0);$	13	$\mathbf{z} \leftarrow \mathbf{y} + \texttt{iNTT}(\hat{c} \circ \hat{\mathbf{s}}_1);$
		14	$\mathbf{r}_0 \leftarrow \texttt{LowBits}(\mathbf{w} - \texttt{iNTT}(\hat{c} \circ \hat{\mathbf{s}}_2), 2\gamma_2);$
		15	if $\ \mathbf{z}\ _{\infty} \geq \gamma_1 - \beta$ or $\ \mathbf{r}_0\ _{\infty} \geq \gamma_2 - \beta$ then
		16	$ $ (z, h) $\leftarrow \perp$
		17	else
		18	$\mathbf{h} \leftarrow ext{MakeHint}(- ext{iNTT}(\hat{c} \circ \hat{\mathbf{t}}_0), \mathbf{w} - \mathbf{v}_0)$
			$\texttt{iNTT}(\hat{c} \circ \hat{\mathbf{s}}_2 + \texttt{iNTT}(\hat{c} \circ \hat{\mathbf{t}}_0)), 2\gamma_2);$
		19	if $\ iNTT(\hat{c} \circ \hat{\mathbf{t}}_0)\ _{\infty} \geq \gamma_2$ or $\#$ of 1's in
			$h > \omega$ then
		20	$ $ $(z,h) \leftarrow \perp$
		21	$\kappa \leftarrow \kappa + l;$
		22 r	return $\sigma = (\mathbf{z}, \mathbf{h}, \tilde{c})$

Similar techniques as for Kyber:

▶ Better layer merging: Merge layers 7–5, 4–2, 1–0, instead of 7–6, 5–4, 3–2, 1–0.

CT-Butterflies for iNTT

Similar techniques as for Kyber:

- ▶ Better layer merging: Merge layers 7–5, 4–2, 1–0, instead of 7–6, 5–4, 3–2, 1–0.
- CT-Butterflies for iNTT

▶ Recall: *c* consists of τ -many ±1s, s_1, s_2 have elements in $[-\eta, \eta]$

- \Rightarrow cs_1 and cs_2 bounded by $au\eta$
- \Rightarrow Regard computation as in $\mathbb{Z}_{q'}$ with $q' > 2 au \eta$ [Chu+21]

Some freedom for choosing q'

Table: Choosing q'

Scheme	η	τ	$2\tau\eta$	q'
Dilithium2	2	39	156	$F_{3} = 257$
Dilithium3	4	49	392	769
Dilithium5	2	60	240	$F_{3} = 257$

Optimization: Small NTTs

Recall: c consists of τ -many ± 1 s, s_1, s_2 have elements in $[-\eta, \eta]$

- $\Rightarrow~c {m s}_1$ and $c {m s}_2$ bounded by $au\eta$
- \Rightarrow Regard computation as in $\mathbb{Z}_{q'}$ with $q' > 2 au \eta$ [Chu+21]

Some freedom for choosing q'

Table: Choosing q'

Scheme	η	τ	$2\tau\eta$	q'
Dilithium2	2	39	156	$F_{3} = 257$
Dilithium3	4	49	392	769
Dilithium5	2	60	240	$F_{3} = 257$

▶ Recall: *c* consists of τ -many ±1s, s_1, s_2 have elements in $[-\eta, \eta]$

- $\Rightarrow~c {m s}_1$ and $c {m s}_2$ bounded by $au\eta$
- $\Rightarrow\,$ Regard computation as in $\mathbb{Z}_{q'}$ with $q'>2\tau\eta$ [Chu+21]

Some freedom for choosing q'

Table: Choosing q'

Scheme	η	τ	$2\tau\eta$	q'
Dilithium2	2	39	156	$F_{3} = 257$
Dilithium3	4	49	392	769
Dilithium5	2	60	240	$F_{3} = 257$

▶ Recall: *c* consists of τ -many ±1s, s_1, s_2 have elements in $[-\eta, \eta]$

- $\Rightarrow~c {m s}_1$ and $c {m s}_2$ bounded by $au\eta$
- $\Rightarrow\,$ Regard computation as in $\mathbb{Z}_{q'}$ with $q'>2\tau\eta$ [Chu+21]

Some freedom for choosing q'

Table: Choosing q'

Scheme	η	au	$2 au\eta$	q'
Dilithium2	2	39	156	$F_3 = 257$
Dilithium3	4	49	392	769
Dilithium5	2	60	240	$F_{3} = 257$

- ▶ CT-Butterfly: $(a, b) \mapsto (a + \omega b, a \omega b)$ can be implemented with mla and mls
- First t = 3 layers have power of two twiddle factor
 - $\Rightarrow\,$ Efficient implementation without loading using barrel shifter and $\log\omega$ as twiddle factor

Algorithm: CT_FNT(*a*, *b*, logW).

```
Input : (a,b) = (a,b)
Output: (a,b) = (a + 2<sup>logW</sup>b, a - 2<sup>logW</sup>b)
1 add a, a, b, lsl #logW;
2 sub b, a, b, lsl #(logW+1);
```

- Incompatible with FNT over F_3
- Kyber NTT/iNTT with q' = 769 and most reductions left out
- Experiments with $q' = F_4 = 65537$ yielding no speed-up over q' = 769
- q' = 3329 also possible for code re-use

Section 4

Results

Based on pqm4

- Clock reduced to 24 MHz
- arm-none-eabi-gcc version 10.2.1 with -03
- Keccak from pqm4
- Randomness from hardware RNG
- Based on pqm4
- Clock reduced to 24 MHz
- arm-none-eabi-gcc version 10.2.1 with -03
- Keccak from pqm4
- Randomness from hardware RNG

- Based on pqm4
- Clock reduced to 24 MHz
- arm-none-eabi-gcc version 10.2.1 with -03
- Keccak from pqm4
- Randomness from hardware RNG

- Based on pqm4
- Clock reduced to 24 MHz
- arm-none-eabi-gcc version 10.2.1 with -03
- Keccak from pqm4
- Randomness from hardware RNG

- Based on pqm4
- Clock reduced to 24 MHz
- arm-none-eabi-gcc version 10.2.1 with -03
- Keccak from pqm4
- Randomness from hardware RNG

Table: Cycle counts for transformation operations of Kyber and Dilithium. NTT and iNTT correspond to the schemes default transformations, i.e., q = 3329 for Kyber and q = 8380417 for Dilithium. The NTT with q = 257 is deployed for Dilithium2 and Dilithium5, and the NTT with q = 769 is used used for Dilithium3.

	Prime	Implementation	NTT	iNTT	basemul
Kyber	q = 3329	[Alk+20] This work	6 852 5 992	6 979 5 491/6 282ª	2 317 1 613 ^b
Dilithium	q = 8380417	[GKS20] This work	8 540 8 093	8 923 8 415	1 955 1 955
	q = 257	This work	5 524	5 563	1 225
	<i>q</i> = 769	[Abd+21] (6-layer) This work	4 852 5 200	4 817 5 537	2 966 1 740

^a First value is for speed-optimization, second for stack-optimization.

^b Asymmetric basemul as used in the IP (enc). As the basemul in the MVP and IP consists of individual function calls, the cycle count is not straight forward to measure.

implementation	variant	operation	Kyber-512	Kyber-768	Kyber-1024
		Matrix-Vector Product ^a	66 291	127 634	209 517
n a ma 4		Matrix-Vector Product ^b	226 580	484 077	840 498
pqm4		Inner Product (enc)	11978	14696	17 429
		Inner Product (dec)	29888	41 910	53792
	speed	Matrix-Vector Product ^a	55 746	106 380	172 152
		Matrix-Vector Product ^b	211606	457 213	796 349
		Inner Product (enc)	8762	10331	11898
This work		Inner Product (dec)	23 425	32 354	41 275
	stack	Matrix-Vector Product ^a	58 028	112 503	184 149
		Matrix-Vector Product ^b	214 053	463 590	808 206
		Inner Product (enc)	11218	13877	16733
		Inner Product (dec)	24722	34 167	43619

Table: Cycle counts for matrix-vector and inner products used in Kyber.

^a Measurement excluding the hashing.

^b Measurement including the hashing.

Table: Cycle counts and stack usage for Kyber for the key generation, encapsulation, and decapsulation. Cycle counts are averaged over 100 executions.

implementation	variant		Kyber-512		Kyber-768		Kyber-1024	
Implementation			сс	stack [B]	сс	stack [B]	сс	stack [B]
		Κ	458k	2 220	745k	3 100	1 188k	3612
pqm4, [Alk+20]		Е	553k	2 308	899k	2780	1 373k	3 292
		D	513k	2 324	839k	2804	1 294k	3 324
		Κ	443k	4 272	718k	5 312	1138k	6 336
	speed	Е	536k	5 376	870k	6416	1 324k	7 432
This work		D	487k	5 384	796k	6 4 3 2	1 227k	7 448
	stack	Κ	444k	2 2 2 2 0	724k	2736	1 149k	3 256
		Е	540k	2 308	879k	2808	1341k	3 328
		D	492k	2 324	807k	2824	1246k	3 352

Table: Cycle counts and stack usage for Dilithium. K, S, and V correspond to the key generation, signature generation, and signature verification. Cycle counts are averaged over 10000 executions.

implementation	variant	Dilithium2		Dilithium3		Dilithium5		
Implementation			сс	stack [B]	сс	stack [B]	сс	stack [B]
		K	1602k	38k	2835k	61k	4 836k	98k
pqm4, [GKS20]		S	4 336k	49k	6721k	74k	9037k	115k
		V	1 579k	36k	2700k	58k	4718k	93k
This work		Κ	1 596k	8 508	2827k	9 540	4 829k	11 696
	speed	S	4 093k	49k	6 623k	69k	8 803k	116k
		V	1 572k	36k	2692k	58k	4 707k	93k

Faster Kyber and Dilithium on the Cortex-M4

<u>Amin Abdulrahman^{1,2}</u> Vincent Hwang^{3,4} Matthias J. Kannwischer³ Amber Sprenkels⁵

¹Ruhr University Bochum, Germany

²Max Planck Institute for Security and Privacy, Bochum, Germany

³Academia Sinica, Taipei, Taiwan

⁴National Taiwan University, Taipei, Taiwan

⁵Digital Security Group, Radboud University, Nijmegen, The Netherlands

23rd June 2022

Bibliography I

- [Abd+21] Amin Abdulrahman et al. Multi-moduli NTTs for Saber on Cortex-M3 and Cortex-M4. Cryptology ePrint Archive, Report 2021/995. https://ia.cr/2021/995. 2021.
- [Alk+20] Erdem Alkim et al. 'Cortex-M4 Optimizations for {R,M}LWE Schemes'. In: IACR Transactions on Cryptographic Hardware and Embedded Systems 2020.3 (June 2020), pp. 336-357. DOI: 10.13154/tches.v2020.i3.336-357. URL: https://tches.iacr.org/index.php/TCHES/article/view/8593.
- [Bai+20] Shi Bai et al. CRYSTALS-Dilithium: Algorithm Specifications And Supporting Documentation (version 3.0). Submission to round 3 of the NIST post-quantum project [Nat]. Oct. 2020.
- [Bec+21] Hanno Becker et al. Neon NTT: Faster Dilithium, Kyber, and Saber on Cortex-A72 and Apple M1. Cryptology ePrint Archive, Report 2021/986. https://ia.cr/2021/986. 2021.

[BKS19] Leon Botros, Matthias J. Kannwischer, and Peter Schwabe. 'Memory-Efficient High-Speed Implementation of Kyber on Cortex-M4'. In: Progress in Cryptology – AFRICACRYPT 2019. Ed. by Johannes Buchmann, Abderrahmane Nitaj, and Tajjeeddine Rachidi. Cham: Springer International Publishing, 2019, pp. 209–228. ISBN: 978-3-030-23696-0.

[Chu+21] Chi-Ming Marvin Chung et al. 'NTT Multiplication for NTT-unfriendly Rings: New Speed Records for Saber and NTRU on Cortex-M4 and AVX2'. In: IACR Transactions on Cryptographic Hardware and Embedded Systems 2021.2 (Feb. 2021), pp. 159–188. DOI: 10.46586/tches.v2021.i2.159-188. URL: https://tches.iacr.org/index.php/TCHES/article/view/8791.

- [GKS20] Denisa O. C. Greconici, Matthias J. Kannwischer, and Amber Sprenkels. 'Compact Dilithium Implementations on Cortex-M3 and Cortex-M4'. In: IACR Transactions on Cryptographic Hardware and Embedded Systems 2021.1 (Dec. 2020), pp. 1–24. DOI: 10.46586/tches.v2021.i1.1–24. URL: https://tches.iacr.org/index.php/TCHES/article/view/8725.
- [Nat] National Institute of Standards and Technology. Post-Quantum Cryptography Standardization Project. Accessed: 2021-04-04. URL: https://csrc.nist.gov/projects/post-quantum-cryptography.

Backup